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We present calculations of the dissociation of hydrogen-bonded molecules in solution, using a mean-
field theory based on a variational method [N.R. Werthamer, in Rare Gas Solids, edited by M. L. Klein
and J. A. Venables (Academic, New York, 1976), Vol. I, Chap. V]. The solvent is accounted for by a
dielectric constant, and the effect of salt ions in solution on hydrogen bonding is treated by means of
Soumpasis’s potential of mean force [D. M. Soumpasis, Proc. Natl. Acad. Sci. USA 81, 5116 (1984)]. At
high concentrations, the effect of salt ions on the interaction is dominated by an effective temperature-
dependent interaction, which results from a position-dependent term in the entropy resulting from the
hard-core volume exclusion. In addition to describing the dissociation transition, this procedure pro-
vides the temperature and electrolyte-concentration dependence of the vibrational spectrum. The sam-
ple calculation by Gao and Prohofsky [J. Chem. Phys. 80, 2242 (1984)] of two ammonia molecules bound
together by a hydrogen bond in a vacuum is reconsidered in an ionic solution. Our method is also ap-
plied to the treatment of the hydrogen-bond dissociation of a pair of water molecules and of a
hydrogen-bonded pair of negative point-charge ions. The latter is intended as a simple model for the dis-
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sociation of a single hydrogen-bonded base-pair unit of a DNA double helix.

PACS number(s): 87.15.Da, 61.20.Qg

I. INTRODUCTION

Most processes of biological interest involve weakly as-
sociated molecules. Hydrogen-bonded complexes and
ions in an aqueous solution constitute important exam-
ples. Typical bond energies are of the order of 0.13 eV
per molecule (3 kcal/mol). The intermolecular forces re-
sponsible for the formation and stability of these systems
are dominated by two features. These are the Coulomb
interactions between charges or multipoles and the steric
constraints characterized by a strong repulsion at short
distances due to the overlap of the electronic shells. The
mean-field approximation is a way to treat a large set of
interacting molecules, by studying a typical molecule in
an average field due to all the other molecules which
must be determined self-consistently. In this paper we
will apply this average field, or the potential of mean
force (PMF) to describe the dissociation of a pair of mole-
cules. The program will be as follows. Section II is a
brief review of the variational method used in this work
[1-3]. Section III is an account of the role of the PMF in
describing the interaction of two particular ions or mole-
cules. Section IV is intended to describe in more detail a
term in the free energy due to the hard-core exclusion
that leads to an effective attractive interaction. In Sec. V
we apply the method to three hydrogen-bonded systems,
two hydrogen-bonded negative ions (anions), two am-
monia, and two water molecules. Section VI is a discus-
sion of the results.

II. A SELF-CONSISTENT
MEAN-FIELD THEORY

In this mean-field theory, a variational harmonic Ham-
iltonian with force constant ¢ is used in the quantum-
statistical-mechanical variational principle. The varia-
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tional free energy is minimized and the values of the force
constant are determined for a temperature 7. This
method was called the self-consistent phonon approxima-
tion because it was originally used to calculate large-
amplitude phonons in a crystal lattice (e.g., at high tem-
peratures or for quantum solids which have a good deal
of zero-point motion) [3], but being simply a variational
method with a harmonic variational Hamiltonian, it can
equally well be applied to two molecules interacting with
an effective potential of mean force, as considered in this
work. The method is able to approximately treat anhar-
monic effects. The Hamiltonian is

H=E,+V(r,1{a}),

where E; is the kinetic energy and V(r,,r,;{a}) is the
potential energy of interaction. The last term depends on
the separation between the centers of the two molecules
located at r; and r, which is equal to |r,—r,|, and {a} is
a set of parameters fixing the relative orientation of the
molecules as well as contributions from the electric mo-
ments and polarizabilities. The free energy is

F=—kgTInTr[exp(—H /kgT)] .
The variational Hamiltonian is
Hy=E;,+L1¢u?,

where ¢ is the variational force constant and u the dis-
placement from the equilibrium position R, i.e.,
[r,—r;|=R +u. This expression has the form of a har-
monic Hamiltonian but it is important to note that this
variational method can treat large displacements due to
the self-consistency. The variational free energy is given
by

F\=Fy+{(H—H,),,
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where
Fy=—kgTInTr[exp(—Hy/kpzT)],
and we use the notation

(6) Tr[Oexp(—Hy/kpT)]
" Tr[exp(—Hy/kyT)]

I

F, is an upper bound on the actual free energy F. The
stationary condition for the free energy requires that

d
d¢F

This results in the following expression for ¢:

1-_—01

[.7 . exp(—u?/2D)(d*/du®)V (R +u)du
e Xy

fw exp(—u?/2D)du

e—Rp

= (1)

Equation (1) shows that ¢ is a weighted average of the
Sforce constant over possible displacements from the posi-
tion of equilibrium Ry, at temperature 7. € is the hard
core of the potential. D is the mean-square displacement
from equilibrium. By using dF,/3(¢/2)={u?),, we ob-
tain the following result:

D={(u?),= 2::@ coth EZQ , 2)

with B=7%/kyT, m is the reduced mass of the two mole-
cules, and w is obtained from

ma’=¢ . (3)

At temperature T the position of equilibrium R is deter-
mined self-consistently [2,1]. In order to determine Ry
we have chosen the following prescription: since in Eq.
(1) (Ry—e)/V'D >>1, we can neglect integrated terms
due to the exponential factor and the equation is written
as

p—— 4

" dR,

[ . exp(—u?/2D)[~(d /dR )V (Rp+u)]du
e Ry

[ exp(—u?/2D)du

e—Rp

b

i.e., ¢ is the negative derivative of the average force; the
condition to determine Ry is that the average force van-
ishes,

d | [ . exp(—u2/2D)V (Rp+u)du

— —Ry
dRy [ exp(—u?/2D)du
T

=0. @4

The quantity in large parentheses is an average of the po-
tential and the equilibrium R is the position where the
averaged potential becomes minimum. For a given tem-
perature T, Egs. (1)-(4) are iterated until a self-consistent
solution is reached.
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III. POTENTIAL OF MEAN FORCE
FOR IONS IN SOLUTION

Consider a solution of salt ions. The free energy of a
fixed ion of type i at a distance r from another fixed ion of
type j is the PMF. The degrees of freedom of the sur-
rounding medium are statistically averaged giving the
free energy of this pair as a function of temperature and
concentration. This result can be derived starting from
the general expression for the free energy [4]. The trace
operation in the quantum-mechanical expression of the
preceding section becomes an integral over phase space in
the classical limit. Therefore the free energy F is ob-
tained from

f exp

where E(p,q), the energy of the system, is a function of
the coordinates and momenta of all solvent molecules
and ions that constitute the solution. The integral is over
the phase space denoted by dT"=dpdq /(27#)". By fixing
the coordinates and momenta of the two ions a distance r
apart and integrating over the rest of the phase space I'’,
we get

F—E(p,q)

kT ar=1, (5)

—w(r) |_ F—E(p',q';r) )
exp —_kBT —fexp KT ar’, (6)

which defines the PMF, w (7). It is the free energy when
the two ions are fixed. The quantity r acts as a parame-
ter. Upon integration over r the free energy is obtained,

i.e.,
f exp

where L is a constant with units of length. Taking the
derivative with respect to r in Eq. (6) and arranging
terms, we get

JI8(F +w(r)—8E(p',q';r)]

—w(r)
kyT

dr

F=—kzTIn e

»

Ft+w(r)—E(p',q';r)
X ' = .
exp kT dr'=0
It follows that
oF F'—E
) = — ! =— .
w(r) [ 3, S*P kT dr' |8r f,or

We omit the function arguments inside the integration to
simplify the notation. For a system kept at constant tem-
perature T the reversible work is given by the change in
the free energy. Then f,, the average force related to a
change in the parameter 7, is defined by the above expres-
sion. We then find that w(r) is the PMF corresponding
tor, dw(r)/or=—f

The ion solution can be thought of as a gas of charged
hard spheres of radius o /2 in a continuous medium, the
solvent. At low concentrations, the PMF is a Debye-
Hiickel screened Coulomb interaction (DH). At high con-
centrations ( =2M), hard-sphere correlations (HS) become
important. As an illustration, the following analytical ex-
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pression of PMF suggested by Olivares and McQuarrie
[5] and used by Soumpasis [6] shows these features:

wy; (N =w}S(r)+zey?"(r) . @)

The second term in Eq. (7) is

pH .\ 2i¢  exp[—«(r—o)]

7 o(r) (1 r0) . . (8)
The first term is

wiHS(r)=~kBT1ng,-j(r) , 9)

where g;;(r) is the pair- -correlation functlon of a hard-
core potential and to first order in po? it is given by

g;(r)=0, r=o,

_ . 47 5 17
g,-j(r)—l-l-—s—pa l—z—‘t‘E; , o<r=<20,
g;(r)=1, 2o0<r.

The definitions used above are the following. The proton
charge, |e| =4.8032 X 10710 esu; z;, a positive or negative
number giving the charge of an ion of type i; €, the dielec-
tric constant of the solvent; p, the total number of ions
per unit volume and p= 3?_, p;, where p; is the number
density of ions of type i; o /2, the hard-core radius of the

ions; k! is the Debye-Hiickel screening length, given by
172
o= 4ire? é 22
kB Te = PiZi

The length « !
ic interaction.
A discussion and the justification of Eq. (7) can be
found in Ref. [5] on p. 151, where its use at relative high
concentrations (=~2M) is supported by numerical calcu-
lations. Even a 2M solution is, however, still sufficiently
dilute to use the low-density approximation for g;;(r)
given under Eq. (9). For example, let us consider the sim-
ple case of a solution of a salt, lithium chloride, in water.
The salt completely dissociates in +|e| and —|e| ions.
The ionic radii of the elements that form the salt are ap-
proximately 1.8 A for Cland 0.6 A for Li [7]. These radii
are smaller than the radii of the hydrated ions. For a
concentrated solution of lithium chloride the hydrated
ion radii corresponding to a distance of coordinated wa-
ter have been reported from neutron and x-ray studies
[8]: 3.240.2 A for Cl~ and 2.2+0.3 A for L1+ The
sums of the hydrated radii are 4.4, 5.4, and 6.4 A for the
pairs Lit-Li*, Li*-Cl~, and ClI™ -Cl™ respectlvely
With a minimum separation o of 5.4 A for a Lit-Cl™
pair and a salt concentration of 2M, po®~0.38 and this
value will give us an estimate of the upper-limit densities
required in this approximation. Throop and Bearman [9]
have evaluated the solution to the Percus-Yevick equa-
tion numerically and tabulated the radial distribution
function for the hard- sphere potential The analytical ex-
pression for this function is glven in Ref. [10,9]. Their
calculation shows that for po®=0.3 the expression for
8;;(r) given under Eq. (9) is a plausible one. A computer

characterizes the range of the electrostat-

program that evaluates the Percus-Yevick correlation
function with a modification [11] which is in good agree-
ment with Monte Carlo data for hard spheres is provided
in Appendix D of Ref. [12]. The PMF obtained when us-
ing in Eq. (9), the Percus-Yevick correlation function is
displayed in Fig. 1 where the interaction of two negative
charges, —|e|, is plotted as a function of the separation r.
The two anions are immersed in a salt solution of concen-
tration ¢ and a solvent dielectric constant €. The salt dis-
sociates to yield free +|e| and —|e| charges. For high
enough concentration of the salt, the potential is attrac-
tive in the range o <r <20 because the Coulomb repul-
sion is screened and the term w/!5(r) becomes important.
The attraction in this range increases with increasing
temperature. This feature can be examined more closely
by writing the PMF [Eq. (7)] with substitution of the ex-
pression under Eq. (9) into w,?s(r). For the two anions in
the range o <r =20, it is found

where A= p1/3/ekBT, k=ko, p=po’, and F=r/o.
With & —41rAp2/ there are two independent parameters
in this express1on i.e., A and p. p is the number concen-
tration of the ions whlch is p, +p_. Since p~ 173 is the
average separation between two nearest ions, A is the ra-

4
3

1——3—r+—

Y 4 16

w(r)=—kBTl

_Ap” 173 exp[—r(F—1)]
1+% 7 ’

o,oozL__I...,Ir...',,rf]r—ﬁ.l.rw—f
Ll T= 150 K
0.001 |- €= 8.0 —
r o= 6 A ]
— [ c=1.94 M i
&> [ ]
()
< 0000 H - [T N\ T
- I .
[N [ 1
& ]
= —0.001 @ —
o [ i
] + -
2 - == .
8 -0.002 — —
E L i
- . «
g i ]
3 -0.003 | —
> : 1
e o b b b by
1 1.5 2 2.5 3 3.5
Anion—Anion Distance r/c¢
FIG. 1. The PMF of two anions near the dissociation tem-

perature is plotted as a function of the separation. Solid lines
( ) represent the PMF [from Eq. (7)] using the Percus-
Yevick pair-correlation function (Refs. [10-12]) in Eq. (9). The
corresponding average potential from the self-consistent equa-
tions which was defined at the end of Sec. II is shown in dotted
lines. At high temperatures the average potential is shallower
than the PMF due to the large fluctuations centered at R;. The
charge of each anion is —|e|. € is the dielectric constant of the
solvent, ¢ is the molar salt concentration, o is the hard core of
the potential, and p the number concentration of the ions,
po?=~0.50 (compared to the maximum of 1.41).
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tio of the Coulomb interaction to the mean thermal ener-
gy kgT. A bar on the variables denotes that length has
been normalized by the hard-core distance o.

Using the self-consistent-field equations we have calcu-
lated the thermal equilibrium separation between the
anion centers Rt as a function of temperature using the
PMF resulting from the first order in po® and from the
Percus-Yevick pair-correlation functions. [In these cal-
culations we used the Percus-Yevick approximation rath-
er than the expression under Eq. (9) because po® was
larger than 0.3, the value for which the expression under
Eq. (9) is valid.] These calculations are shown in Fig. 2.
The insets show the rms displacement and the force-
constant parameter. The integration in Eq. (1) required
an analytic expression for the potential at r <o; in this
region the potential is repulsive. We added a repulsive
exponential that does not change significantly the
minimum of the PMF and provides a strong hard core at
r<o; its form is the fgllowing: A exp(—Ar), where
A =1000 eV and A=18 A~!. In the temperature inter-
val displayed in Fig. 2, Ry is within the attractive part of
the potential. The anion-anion separation increases with
temperature and gets out of the range o <r =20; this
happens at 86 and 155 K in each of the calculations.
Beyond these temperatures a self-consistent solution no
longer exists and this point is used as a criterion for the
dissociation temperature. The example displayed has a
value of po®~0.50 (compared to the maximum of 1.41,
the value for close-packed spheres [13]). This value of
po? is beyond the estimated limits for an approximation
that uses g;;(7) up to first order in po>. At high tempera-
tures, the difference between the two curves increases
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FIG. 2. The results of the self-consistent equations with a po-
tential for two anions. The thermal separation R is plotted as
a function of the temperature. The insets show the rms dis-
placement V"D and the force constant ¢ as functions of temper-
ature. Dissociation occurs when a self-consistent-field-equation
solution no longer exists; this fact corresponds to the vanishing
of the force constant and a sharp increase of R; and V' D. The
dotted lines show the results using the PMF calculated from the
pair-correlation function g;;(#) up to first order in po?. Solid
lines correspond to a calculation where the pair-correlation
function in the Percus-Yevick approximation was used (Refs.
[10—12]). In this example po®=~0.50.
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with temperature as expected. The averaged potential as
it was defined at the end of Sec. II is shown in Fig. 1. At
finite temperatures the fluctuations centered at R, make
the average of the potential shallower than the PMF.

The attractive term discussed in this section is due to
an entropy effect that turns out to be important when
electrostatic repulsion is screened. This feature can be
qualitatively explained by a geometrical consideration of
the excluded volume of the fixed ions. This is shown in
Fig. 3 and discussed in the next section. The PMF given
in Eq. (7) will be used to treat the systems that we consid-
er in an ionic environment.

IV. ATTRACTIVE INTERACTION
DUE TO HARD-CORE EXCLUSION

In the following discussion we examine the implica-
tions of picturing the solution as charged hard spheres in
a continuous medium. Because of the high degree of
screening at the densities we have considered the charge
does not take part in the argument, and what is impor-
tant is the finite size of the ions. Consider a gas consist-
ing of N +2 hard-sphere ions of radius o /2. In this sys-
tem the centers of two ions cannot get closer than a dis-
tance o, the hard core of the potential. To get the free
energy of the gas when two arbitrary ions are kept fixed a
distance r apart, we have to integrate over the phase
space due to the other ions in Eq. (6). The integration
over the momenta can be performed; it gives a term in-
dependent of r. The potential energy is zero until the dis-
tance of approach of two ions is less than o when it be-
comes infinite. Therefore the exponential inside the in-
tegral is 1 whenever two ions are at a distance larger than
o, otherwise it vanishes. Omitting r-independent terms
due to the momenta integration and to the indistinguisha-
bility of the particles we have the following expression for
the free energy:

,drydr, - dry

W=—kyTln| [ o
where the integration is restricted in the sense that no
two ions can get closer than a distance o. Consider a
sphere of radius o centered at every ion, the excluded
sphere of the ion [14]. This idea was used by Boltzmann
in calculating corrections to a van der Waals equation of
state. The volume of an excluded sphere is eight times
the volume of an ion and it defines the space where the
center of a second ion cannot penetrate, as illustrated in
Fig. 3. It is possible to get an approximate value of this
integral at low concentrations, when the excluded spheres
are not touching. In this regime the mean ion separation
p 173 is large compared to o and the total volume V is
much larger than the volume occupied by the spheres.
The integral is approximately equal to [(V —Nv,)/ V1Y,
where vy =(47/3)0? is the volume excluded by a sphere.
Expanding the logarithm and keeping first-order terms in
the density p=N /V, the free energy per particle is

w=kgTpv, . (10
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This expression is independent of ». If the two fixed ions
are closer than 20, r-dependent corrections become im-
portant, due to the overlap of the excluded spheres, as
shown in Fig. 3. These corrections are given in Eq. (9) by
wiS(r)= —kgTIng;(r), where g;(r) is the pair-
correlation function of a hard-core potential to first order
in the density [15]. It can be shown that when 7 is in the
range o <r <20, Eq. (9) can be written

wiS(r)=—kyTIn[1+pv,(r)],

where v, is the space where the two excluded spheres of
the fixed ions overlap. In the limit when this space of
overlap v, is small with respect to the average volume oc-
cupied by an ion, v,(r)p <<1, the expression for the free
energy becomes approximately

wHC(r)= —kz Tpv,(r) . 1y

This is a function of r and it decreases when the overlap
v,(r) increases, that is, when the two ions get closer to-
gether. When the two ions are close the excluded volume
of the pair is less than when the are far apart, by an
amount that corresponds to the overlap of the spheres,
which is the space that is excluded to the other ions.

For a separation r between two spheres, the volume of
overlap can be calculated [14,15] from

vl(r)=277'f;2[02—x2]dx

3

_3r 1
4 o 16

r

o

where o <r <2¢. The range of concentrations for which
one expects this approximation to hold is when the gas is
dilute enough to assure that multiple close encounters do
not occur in more than pairs.

The excluded volume for n spheres that overlap would
be nvg— v +3v,— -+ — v, _, where v, _, is the
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FIG. 3. Excluded volume to other ions in solution. When
the two fixed ions are far away (=20) the total excluded
volume is larger than when they are at close distances because
there is an overlap of the spheres. The minimum separation is
o.
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common space to n spheres. For a hard-sphere gas there
is a maximum of 12 spheres that can have a mutual over-
lap and that occurs at the maximum concentration of
V'2/03. The hard-sphere pair-correlation function has
also been calculated in the so-called mean spherical ap-
proximation for the case when the radii of the two fixed
ions differ. See Ref. [16] on bottom of p. 6282. The ex-
cluded volume when the spheres overlap is obtained if we
replace o by (0,+0,)/2 in the expressions, where o; and
o, are the diameters of the two ions. Assuming o> 0,
and keeping o, fixed, the effect would decrease if the di-
ameter of the second ion o, decreases.

V. HYDROGEN-BONDING DISSOCIATION
IN IONIC SOLUTION

The general considerations given at the beginning of
Sec. III for the two ions can be made for the case of a
pair of molecules. Therefore, besides the two-anion case
already discussed, we have chosen three hydrogen-
bonded systems: -two negative charges, two ammonia
molecules, and two water molecules. The four geometric
arrangements are shown in Fig. 4. The hydrogen bond is
formed by a hydrogen atom in between the centers of
negative charge that are at a distance r. In the original
treatment by Gao and Prohofsky [17] the hydrogen bond
of the two ammonia molecules was given by a Morse po-
tential. In that calculation the molecules were taken as
two point masses. The Morse potential fit the results of a
quantum-mechanical calculation for this particular
geometric arrangement of the molecules [18]. In the case
of water we use a Morse potential that fits published en-
ergy values [19]. The Morse potential is given by
V(r)=Vy({1— exp[ —a(r —R,)]}?—1). The Morse pa-
rameters for the two-anion case were V,=3.48 kcal/mol,
a=122 A7, R;=3.37 A; for ammonia V,=3.48
kcal/mol, @=1.22 A~!, R;=3.37 A; and for water

TWO ANIONS ANION H BOND

O—e ©)

r

AMMONIA H BOND WATER H BOND

FIG. 4. The geometry for each system is sketched, two
anions and three hydrogen-bonded pairs. The two tetragonal
ammonia molecules are arranged in a symmetrical staggered
conformation. In the water case the axis of the H bond is in the
plane of one molecule, the plane of the second molecule makes a
30° angle with a plane perpendicular to this axis. The small cir-
cles represent positive-charge sites.

r r
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V,=5.2 kcal/mol, a=1.43 A™!, R;=3.07 A. In the
figures we have used eV as a unit of energy, 1.0 eV
=23.06 kcal/mol, 1 eV/A2=16.02 kdyn/cm. We ob-
tained the electrostatic contribution of the bonding and
estimated the effects of the medium by including the
PMF. It is assumed that the Morse potential consists of
two effective contributions, a hard core and a long-range
electrostatic interaction

VMor = VHC + VCoul ’ (12)

where V,, represents a sum of the pair Coulomb in-
teraction between the charges of the bonded pair. The
effects of interaction with the solution are introduced by
replacing the electrostatic interaction V,, by the PMF.
In solution, the hydrogen-bond potential is

V=Vac+Veur » 13)

where Vpyp represents the sum of the charge interactions
using the PMF [Eq. (7)]. Subtraction of Eq. (12) from Eq.
(13) yields the potential to be used in the self-consistent
mean-field theory, Egs. (1)-(4),

V=Vror +[Vemr— Vecou - (14)

This last expression depends upon the distance r between
the negative charge centers of the bonded pair. In Fig. 5,
two examples of this expression at finite salt concentra-
tion and temperature are displayed by dot-dashed lines.
The corresponding thermal average potentials defined at
the end of Sec. II are shown by dotted lines. At zero con-
centration, Eq. (14) reduces to a Morse potential which is

A B E M S —— — ]
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0.00 — o =20. s 4 T T 6"“000 —

E -0.05 — —

> I ]
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g -o10 | —

E r T= 300 K b
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—-0.15 — —

P N I R A = P

1 1.5 2 2.5

Anion—Anion Distance r/c¢

FIG. 5. Energy of interaction of two anions with a H bond.
Dot-dashed lines (—-—-—- ) represent the potential obtained
from Eq. (14), the salt concentration is 0.005M, and temperature
T =300 K. Two values of the dielectric constant are displayed,
€=20.0, €=3.0, and 0=2.8 A. The dotted lines display the
thermal average potential that corresponds to Eq. (14). They
were obtained from the expression given at the end of Sec. II.
At zero salt concentration the energy is a Morse potential. In-
creasing the concentration, the position of the minimum in-
creases and the potential gets shallower. The < depicts the elec-
trostatic energy Vcou, calculated from charge pair interactions.
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shown by a solid line. Following the arguments given at
the beginning of Sec. III, Eq. (14) is the free energy for a
given separation r. The Morse potential used in the cal-
culations is written as Vy,, =4V, ({1— exp[ —a(F
—1)1}2—1), where @=ao, F=r/0, c=R,—(1/a)In2.
Here, o represents the distance where the Morse poten-
tial vanishes and it corresponds to the minimum separa-
tion where the electrostatic interactions are considered in
these calculations. At smaller distances only the repul-
sive part of the Morse potential operates. o is approxi-
mately 2.8 A in the ammoma and the hydrogen-bonded
anion cases; and 2.6 A in the water case. A bar in the
formulas means that length is scaled by 0. We have as-
sumed a radius of o /2 for each molecule in the bonded
pair. In the range o <r <2¢ the PMF for the two-anion
system is

VPMF=—kBT[ln 1+p4;T 1—%74—%73 ]
——1/3
A&—--—exp[—;c(r—l)]
1+K
x [L-2_ |1,
7 7F—h

where we follow definitions similar to those used in the
two-anion case of Sec. III. The additional symbols are
8=|qy /el, qy is the effective positive charge that stabi-
lizes the bonding and # =h /o is the separation from this
positive point charge to the closest anion which remains
fixed. Charges are — |e| for each anion and g, =0.98]e|,
le| is the proton charge. The fixed separation from the
negative ion to the positive center was set to 2 =0.15 A.
For the water and ammonia systems we have used the
conformations and parameters given in the references
[18,19] as it is shown in Fig. 4. The ammonia molecules
were placed in a staggered geometry [18]. For water, the
oxygen atoms are in the plane of one molecule and the
plane of the second one makes a 30° angle with a plane
perpendicular to the bond axis [19]. For water, # =0.956
A and the O-H-O angle is 105.2°. For ammonia,
h =0.991 A and the N-O-N angle is 115.9°. The par-
tial charges for the ammonia molecule are 0.32|e| for hy-
drogen and —0.96|e| for nitrogen. For water, they are
0.33|e| for hydrogen and —0.66|e| for oxygen. The re-
sults of the self-consistent set of equations for the two
hydrogen-bonded anions are shown in Figs. 6 and 7. For
all hydrogen-bonded systems, the thermal averaged sepa-
ration of the negative centers Ry represents the H-bond
length at equilibrium, VD is the root-mean-squared dis-
placement (rms) and ¢ the force constant from Egs.
(1)-(4). These quantities are functions of temperature
and salt concentration. In these calculations the systems
were considered dissociated at the temperature where a
self-consistent solution no longer exists which coincides
with the vanishing of the force constant ¢ and with a
sharp increase in the equilibrium separation and the rms
deviation V' D. In the examples the maximum value of
the density parameter was p03=0.13 which makes the
PMF calculated from the expression for g (r);; under Eq.
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FIG. 6. H-bond dissociation transition as a function of tem-
perature and salt concentration (c). The thermal separation Ry
between the two anions with a H bond and the corresponding
rms displacement V'D (in the inset) are displayed. For low con-
centration, the dashed lines (— — —) represent the following
concentrations and temperatures associated with a rms displace-
ment of 10% of Ry (in parentheses): OM (390 K), 0.001M (385
K), 0.005M (375 K); the dissociation temperature decreases with
increasing concentrations. In high concentration, the solid lines
( ) represent 1M (360 K), 2M (360 K), SM (375 K); the dis-
sociation temperature increases with increasing concentration.
The hard core o is ~2.8 A and €=20.0 in these calculations.
For a molar concentration of the salt of 5M, po>~0.13 (com-
pared to the maximum of 1.41).
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FIG. 7. H-bond force constant as a function of temperature
and salt concentration is shown. The corresponding force con-
stants of Fig. 6 are displayed. For low concentration, the
dashed lines (— — —) represent the following concentrations
and temperatures associated with a rms displacement of 10% of
Ry (in parentheses): OM (390 K), 0.001M (385 K), 0.005M (375
K); the dissociation temperature decreases with increasing con-
centration. In high concentration, the solid lines ( )
represent 1M (360 K), 2M (360 K), SM (375 K); the dissociation
temperature increases with increasing concentration. The hard
core o is ~2.8 A and €=20.0 in these calculations. For a con-
centration of the salt of 5SM, pa®~0.13 (compared to the max-
imum of 1.41 of close-packed spherical ions).
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(9) a suitable approximation. A calculation using an
analytical expression for g (r);; up to second order in the
density [20] showed no essential changes. In the figure
captions, the temperature where the rms displacement
reaches 10% of Ry is noted to nearly coincide with the
beginning of the transition. The reduced mass parameter
used for the two-anion case corresponds to a hydrogen-
bonded pair of CI~ (=18 amu). The calculations are al-
most insensitive to a mass change. For example, if in the
calculations shown we use the mass parameter corre-
sponding to a pair of F~ the transition temperature
would be lower by 1 or 2 K.

VI. DISCUSSION OF RESULTS

The present self-consistent-field approximation is able
to describe a dissociation transition in the systems that
we treated. We have shown that the temperature of dis-
sociation can be defined as the temperature where the
self-consistent equations no longer have a solution; this
corresponds to the vanishing of the force-constant pa-
rameter and a sharp increase in the equilibrium separa-
tion and the fluctuations. The way of introducing the
PMF in Eq. (14) is consistent with the mean-field nature
of the approximation. We have stressed the importance
of introducing non-Coulomb contributions to the free en-
ergy due essentially to the finite size of the ions or mole-
cules. The competition between intermolecular forces
other than van der Waals have been pointed out in the
literature [6,16,21,22]. Attractive terms that are depen-
dent on the counterion concentration have been found.
This attractive interaction is an entropy effect. For two
equally charged planar electrical double layers [21,22]
there is evidence of structure in the effective interaction
that shows attractive contributions. Whether or not this
mechanism is similar to the one found for the two-anion
case requires further investigation. The example of two
anions shows a regime where the non-Coulomb contribu-
tions are important. See Fig. 1. In this case, the hard
core of the potential is given by the parameter o =6 A.
This value is close to twice the hydrated radius of Cl—,
corresponding to a distance of coordinated water, report-
ed from x-ray and neutron studies in concentrated LiCl
solutions, rc,=3.2 A [8]. In a concentrated solution
and within separations of a few angstroms, we expect the
value of the dielectric-constant parameter determined by
the molecular polarizability of bound water molecules of
the hydration shells. The dielectric-constant parameter
used in this example was set to €é=8.0. This value is of
the order of the dielectric constant attributed to water of
hydration, as it is suggested in the literature [23]. The re-
sults obtained for the three hydrogen-bonded systems are
qualitatively similar. The ammonia system is somewhat
unrealistic in the sense that when immersed in a polar
medium such as water the ammonia molecule becomes
ammonium .(NH; ). The ammonia system was chosen in
order to make comparisons with the initial calculation of
Gao and Prohofsky [17]. A typical calculation with the
anion H-bond system is shown in Figs. 5—7. The energy
of the H bond that corresponds to Eq. (14) is shown for
different concentrations in Fig. 5. The Morse parameters
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for the H bond of the example displayed in Figs. 5—-7 give
an attractive energy that is weak compared to the H bond
of water. We have considered this example since there is
experimental evidence that weak H-bond energies are
commonly found in biological systems [18,24]. These
curves show correctly the limiting form of the Morse po-
tential, when no medium is considered. As it is seen in
Fig. 5, the form of the potential is strongly dependent on
the dielectric-constant parameter €. We have chosen a
lower value for € than the bulk dielectric constant of wa-
ter and close its saturation arising from molecular polari-
zability that displays a reasonable temperature of melt-
ing. On increasing the concentration the well gets shal-
lower and the position of the minimum is increased. This
effect is due to the ion screening of Coulomb interaction
of the H bond. The dissociation of the hydrogen-bonded
anions is displayed in Figs. 6 and 7 as a function of tem-
perature for various concentrations and €=20.0. In the
range of low salt concentrations, an increase of the con-
centration produces a decrease in the temperature of the
transition, a result to be expected because of Debye-
Hiickel screening. This fact is seen by the trend of the
dashed lines in Figs. 6 and 7. In the hydrogen-bonded

water molecules the dissociation-temperature shift is con-
sistent with the trend in the melting-point depression of
water which is expected when salt is dissolved [25]. This
behavior of charge shielding might be responsible for the
fact that DNA is dissociated in water at room tempera-
ture in the absence of excess salt. In this low-
concentration regime the excluded-volume effects are not
important. In the regime of high salt concentration the
shift is reversed; on increasing the concentration the dis-
sociation transition temperature increases. This fact is
shown by solid lines in the figures. In this high-
concentration limit the Coulomb interaction is screened
out and it is the attractive term due to the hard-core ex-
clusion that tends to stabilize the bond. The use of Eq.
(9) with the hard-core correlation to first order in po?® is
justified since the maximum value of this parameter is
0.13 as it is noted in the figure captions.
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